Сила всемирного тяготения определение в физике. Закон всемирного тяготения формула ньютона. Закон всемирного тяготения Ньютона

В 1667 году. Ньютон понимал, что для того, чтобы Луна вращалась вокруг Земли, а Земля и другие планеты вокруг Солнца, должна существовать сила, удерживающая их на круговой орбите. Он предположил, что сила тяжести, действующая на все тела на Земле и сила, удерживающая планеты на их круговых орбитах, есть одна и та же сила. Эта сила получила название сила всемирного тяготения или гравитационная сила . Эта сила является силой притяжения и действует между всеми телами. Ньютон сформулировал закон всемирного тяготения : две материальные точки притягиваются друг к другу с силой прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними .

Коэффициент пропорциональности G во времена Ньютона был неизвестен. Впервые он был экспериментально измерен английским ученым Кавендишем . Этот коэффициент называется гравитационной постоянной . Ее современное значение равно . Гравитационная постоянная является одной из самых фундаментальных физических констант. Закон всемирного тяготения можно записать в векторном виде. Если сила, действующая на вторую точку со стороны первой равна F 21 , а радиус-вектор второй точки относительно первой равен R 21 , то:

Представленный вид закона всемирного тяготения справедлив только для гравитационного взаимодействия материальных точек. Для тел произвольной формы и размеров его использовать нельзя. Вычисление гравитационной силы в общем случае является очень непростой задачей. Однако, есть тела, не являющиеся материальными точками, для которых гравитационную силу можно считать по приведенной формуле. Это тела, обладающие сферической симметрией, например, имеющие форму шара. Для таких тел приведенный закон справедлив, если под расстоянием R понимать расстояние между центрами тел. В частности силу тяжести, действующую на все тела со стороны Земли можно считать по этой формуле, так как Земля имеет форму шара, а все остальные тела можно считать материальными точками по сравнению с радиусом Земли.

Так как сила тяжести является гравитационной силой, то можно написать, что сила тяжести, действующая на тело массой m равна

Где М З и R З - масса и радиус Земли. С другой стороны сила тяжести равна mg, где g - ускорение свободного падения. Значит ускорение свободного падения равно

Это формула для ускорения свободного падения на поверхности Земли. Если удаляться от поверхности Земли, то расстояние до центра Земли будет увеличиваться, а ускорение свободного падения соответственно уменьшаться. Так на высоте h над поверхностью Земли ускорение свободного падения равно:

Когда он пришел к великому результату: одна и та же причина вызывает явления поразительно широкого диапазона - от падения брошенного камня на Землю до движения огромных космических тел. Ньютон нашел эту причину и смог точно выразить ее в виде одной формулы - закона всемирного тяготения.

Так как сила всемирного тяготения сообщает всем телам одно и то же ускорение независимо от их массы, то она должна быть пропорциональна массе того тела, на которое действует:



Но поскольку, например, Земля действует на Луну с силой, пропорциональной массе Луны, то и Луна по третьему закону Ньютона должна действовать на Землю с той же силой. Причем эта сила должна быть пропорциональна массе Земли. Если сила тяготения является действительно универсальной, то со стороны данного тела на любое другое тело должна действовать сила, пропорциональная массе этого другого тела. Следовательно, сила всемирного тяготения должна быть пропорциональна произведению масс взаимодействующих тел. Отсюда вытекает формулировка закона всемирного тяготения.

Определение закона всемирного тяготения

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними:



Коэффициент пропорциональности G называется гравитационной постоянной .

Гравитационная постоянная численно равна силе притяжения между двумя материальными точками массой 1 кг каждая, если расстояние между ними равно 1 м. Ведь при m 1 =m 2 =1 кг и R =1 м получаем G=F (численно).

Нужно иметь в виду, что закон всемирного тяготения (4.5) как всеобщий закон справедлив для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис.4.2 ). Подобного рода силы называются центральными.



Можно показать, что однородные тела, имеющие форму шара (даже если их нельзя считать материальными точками), также взаимодействуют с силой, определяемой формулой (4.5). В этом случае R - расстояние между центрами шаров. Силы взаимного притяжения лежат на прямой, проходящей через центры шаров. (Такие силы и называются центральными.) Тела, падение которых на Землю мы обычно рассматриваем, имеют размеры, много меньшие, чем земной радиус (R≈6400 км). Такие тела можно, независимо от их формы, рассматривать как материальные точки и определять силу их притяжения к Земле с помощью закона (4.5), имея в виду, что R есть расстояние от данного тела до центра Земли.

Определение гравитационной постоянной

Теперь выясним, как можно найти гравитационную постоянную. Прежде всего заметим, что G имеет определенное наименование. Это обусловлено тем, что единицы (и соответственно наименования) всех величин, входящих в закон всемирного тяготения, уже были установлены ранее. Закон же тяготения дает новую связь между известными величинами с определенными наименованиями единиц. Именно поэтому коэффициент оказывается именованной величиной. Пользуясь формулой закона всемирного тяготения, легко найти наименование единицы гравитационной постоянной в СИ:

Н м 2 /кг 2 =м 3 /(кг с 2).

Для количественного определения G нужно независимо определить все величины, входящие в закон всемирного тяготения: обе массы, силу и расстояние между телами. Использовать для этого астрономические наблюдения нельзя, так как определить массы планет , Солнца, да и Земли, можно лишь на основе самого закона всемирного тяготения, если значение гравитационной постоянной известно. Опыт должен быть проведен на Земле с телами, массы которых можно измерить на весах.

Трудность состоит в том, что гравитационные силы между телами небольших масс крайне малы. Именно по этой причине мы не замечаем притяжение нашего тела к окружающим предметам и взаимное притяжение предметов друг к другу, хотя гравитационные силы - самые универсальные из всех сил в природе. Два человека массами по 60 кг на расстоянии 1 м друг от друга притягиваются с силой всего лишь порядка 10 -9 Н. Поэтому для измерения гравитационной постоянной нужны достаточно тонкие опыты.

Впервые гравитационная постоянная была измерена английским физиком Г. Кавендишем в 1798 г. с помощью прибора, называемого крутильными весами. Схема крутильных весов показана на рисунке 4.3. На тонкой упругой нити подвешено легкое коромысло с двумя одинаковыми грузиками на концах. Рядом неподвижно закреплены два тяжелых шара. Между грузиками и неподвижными шарами действуют силы тяготения. Под влиянием этих сил коромысло поворачивается и закручивает нить. По углу закручивания можно определить силу притяжения. Для этого нужно только знать упругие свойства нити. Массы тел известны, а расстояние между центрами взаимодействующих тел можно непосредственно измерить.



Из этих опытов было получено следующее значение для гравитационной постоянной:



Лишь в том случае, когда взаимодействуют тела огромных масс (или по крайней мере масса одного из тел очень велика), сила тяготения достигает большой величины. Например, Земля и Луна притягиваются друг к другу с силой F ≈2 10 20 H.

Зависимость ускорения свободного падения тел от географической широты

Одна из причин увеличения ускорения свободного падения при перемещении точки, где находится тело, от экватора к полюсам, состоит в том, что земной шар несколько сплюснут у полюсов и расстояние от центра Земли до ее поверхности у полюсов меньше, чем на экваторе. Другой, более существенной причиной является вращение Земли.

Равенство инертной и гравитационной масс

Самым поразительным свойством гравитационных сил является то, что они сообщают всем телам, независимо от их масс, одно и то же ускорение. Что бы вы сказали о футболисте, удар которого одинаково ускорял бы обыкновенный кожаный мяч и двухпудовую гирю? Каждый скажет, что это невозможно. А вот Земля является именно таким «необыкновенным футболистом» с той только разницей, что действие ее на тела не носит характера кратковременного удара, а продолжается непрерывно миллиарды лет.

Необыкновенное свойство гравитационных сил, как мы уже говорили, объясняется тем, что эти силы пропорциональны массам обоих взаимодействующих тел. Факт этот не может не вызывать удивления, если над ним хорошенько задуматься. Ведь масса тела, которая входит во второй закон Ньютона, определяет инертные свойства тела, т. е. его способность приобретать определенное ускорение под действием данной силы. Эту массу естественно назвать инертной массой и обозначить через m и .

Казалось бы, какое отношение она может иметь к способности тел притягивать друг друга? Массу, определяющую способность тел притягиваться друг к другу, следует назвать гравитационной массой m г .

Из механики Ньютона совсем не следует, что инертная и гравитационная массы одинаковы, т. е. что



Равенство (4.6) является непосредственным следствием из опыта. Оно означает, что можно говорить просто о массе тела как о количественной мере как инертных, так и гравитационных его свойств.

Закон всемирного тяготения является одним из самых универсальных законов природы. Он справедлив для любых тел, обладающих массой.

Значение закона всемирного тяготения

Но если подойти к этой теме, более кардинально, то выясняется, что закон всемирного тяготения не везде есть возможность его применения. Этот закон нашел свое применение для тел, которые имеют форму шара, его можно использовать для материальных точек, а также он приемлем для шара, имеющего большой радиус, где этот шар может взаимодействовать с телами, гораздо меньшими, чем его размеры.

Как вы уже догадались из информации, предоставленной на этом уроке, что закон всемирного тяготения является основой в изучении небесной механики. А как вы знаете, небесная механика изучает движение планет.

Благодаря этому закону всемирного тяготения, появилась возможность в более точном определении расположения небесных тел и возможность вычисления их траектории.

Но вот для тела и бесконечной плоскости, а также для взаимодействия бесконечного стержня и шара эту формулу применять нельзя.

С помощью этого закона Ньютон смог объяснить не только то, как движутся планеты, но и почему возникают морские приливы и отливы. По истечении времени, благодаря трудам Ньютона, астрономам удалось открыть такие планеты Солнечной системы, как Нептун и Плутон.

Важность открытия закона всемирного тяготения заключается в том, что с его помощью появилась возможность делать прогнозы солнечных и лунных затмений и с точностью рассчитывать движения космических кораблей.

Силы всемирного тяготения являются наиболее универсальными со всех сил природы. Ведь их действие распространяется на взаимодействие между любыми телами, имеющими массу. А как известно, то любое тело обладает массой. Силы тяготения действуют сквозь любые тела, так как для сил тяготения нет приград.

Задача

А теперь, чтобы закрепить знания о законе всемирного тяготения, давайте попробуем рассмотреть и решить интересную задачу. Ракета поднялась на высоту h равную 990 км. Определите, насколько уменьшилась сила тяжести, действующая на ракету на высоте h, по сравнению с силой тяжести mg, действующей на нее у поверхности Земли? Радиус Земли R = 6400 км. Обозначим через m массу ракеты, а через M массу Земли.




На высоте h сила тяжести равняется:


Отсюда вычислим:


Подстановка значение даст результат:

Легенду про то, как Ньютон открыл закон всемирного тяготения, получив яблоком по макушке, придумал Вольтер. Причем сам Вольтер уверял, что эту правдивую историю ему рассказала любимая племянница Ньютона Кэтрин Бартон. Вот только странно, что ни сама племянница, ни ее очень близкий друг Джонатан Свифт, в своих воспоминаниях о Ньютоне про судьбоносное яблоко никогда не упоминали. Кстати и сам Исаак Ньютон, подробно записывая в своих тетрадях результаты экспериментов по поведению разных тел, отмечал только сосуды, наполненные золотом, серебром, свинцом, песком, стеклом водой или пшеницей, ни как ни о яблоке. Впрочем, это не помешало потомкам Ньютона водить экскурсантов по саду в имении Вулсток и показывать им ту самую яблоню, пока ее не сломала буря.

Да, яблоня была, и яблоками наверняка с нее падали, но насколько велика заслуга яблока в деле открытия закона всемирного тяготения?

Споры о яблоке не затихают вот уже 300 лет, так же как и споры о самом законе всемирного тяготения верее о том, кому принадлежит приоритет открытия.ук

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

В природе существуют различные силы, которые характеризуют взаимодействие тел. Рассмотрим те силы, которые встречаются в механике.

Гравитационные силы. Вероятно, самой первой силой, существование которой осознал человек, являлась сила притяжения, действующая на тела со стороны Земли.

И потребовались многие века для того, чтобы люди поняли, что сила тяготения действует между любыми телами. И потребовались многие века для того, чтобы люди поняли, что сила тяготения действует между любыми телами. Первым этот факт понял английский физик Ньютон. Анализируя законы, которым подчиняется движение планет (законы Кеплера), он пришёл к выводу, что наблюдаемые законы движения планет могут выполняться только в том случае, если между ними действует сила притяжения, прямо пропорциональная их массам и обратно пропорциональная квадрату расстояния между ними.

Ньютон сформулировал закон всемирного тяготения . Любые два тела притягиваются друг к другу. Сила притяжения между точечными телами направлена по прямой, их соединяющей, прямо пропорциональна массам обоих и обратно пропорциональна квадрату расстояния между ними:

Под точечными телами в данном случае понимают тела, размеры которых во много раз меньше расстояния между ними.

Силы всемирного тяготения называют гравитационными силами. Коэффициент пропорциональности G называют гравитационной постоянной. Его значение было определено экспериментально: G = 6,7 10¯¹¹ Н м² / кг².

Сила тяготения действующая вблизи поверхности Земли, направлена к её центру и вычисляется по формуле:

где g – ускорение свободного падения (g = 9,8 м/с²).

Роль силы тяготения в живой природе очень значительна, так как от её величины во многом зависят размеры, формы и пропорции живых существ.

Вес тела. Рассмотрим, что происходит, когда некоторый груз кладут на горизонтальную плоскость (опору). В первый момент после того, как груз опустили, он начинает двигаться вниз под действием силы тяжести (рис. 8).

Плоскость прогибается и возникает сила упругости (реакция опоры), направленная вверх. После того как сила упругости (Fу) уравновесит силу тяжести, опускание тела и прогиб опоры прекратятся.

Прогиб опоры возник под действием тела, следовательно, со стороны тела на опору действует некоторая сила (Р), которую называют весом тела (рис. 8, б). По третьему закону Ньютона вес тела равен по величине силе реакции опоры и направлен в противоположную сторону.

Р = - Fу = Fтяж.

Весом тела называют силу Р, с которой тело действует на неподвижную относительно него горизонтальную опору .

Поскольку сила тяжести (вес) приложены к опоре, она деформируется и за счёт упругости оказывает противодействие силе тяжести. Силы, развиваемые при этом со стороны опоры называются силами реакции опоры, а само явление развития противодействия - реакцией опоры. По третьему закону Ньютона сила реакции опоры равна по величине силе тяжести тела и противоположна ему по направлению.

Если человек на опоре движется с ускорением звеньев его тела, направленных от опоры, то сила реакции опоры возрастает на величину ma, где m – масса человека, а – ускорения с которыми движутся звенья его тела. Эти динамические воздействия можно фиксировать с помощью тензометрических устройств (динамограммы).

Вес не следует путать с массой тела. Масса тела характеризует его инертные свойства и не зависит ни от силы тяготения, ни от ускорения, с которым оно движется.

Вес тела характеризует силу, с которой оно действует на опору и зависит как от силы тяготения, так и от ускорения движения.

Например, на Луне вес тела примерно в 6 раз меньше, чем вес тела на Земле, Масса же в обоих случаях одинакова и определяется количеством вещества в теле.

В быту, технике, спорте вес часто указывают не в ньютонах (Н), а в килограммах силы (кгс). Переход от одной единицы к другой осуществляется по формуле: 1 кгс = 9,8 Н.

Когда опора и тело неподвижны, то масса тела равна силе тяжести этого тела. Когда же опора и тело движутся с некоторым ускорением, то в зависимости от его направления тело может испытывать или невесомость или перегрузку. Когда ускорение совпадает по направлению и равно ускорению свободного падения, вес тела будет равен нулю, поэтому возникает состояние невесомости (МКС, скоростной лифт при опускании вниз). Когда же ускорение движения опоры противоположно ускорению свободного падения, человек испытывает перегрузку (старт с поверхности Земли пилотируемого космического корабля, Скоростной лифт, поднимающийся вверх).

Ни для кого не секрет, что закон всемирного тяготения был открыт великим английским ученым Исааком Ньютоном, по легенде гуляющим в вечернем саду и раздумывающем над проблемами физики. В этот момент с дерева упало яблоко (по одной версии прямо на голову физику, по другой просто упало), ставшее впоследствии знаменитым яблоком Ньютона, так как привело ученого к озарению, эврике. Яблоко, упавшее на голову Ньютону и вдохновило того к открытию закона всемирного тяготения, ведь Луна в ночном небе оставалась не подвижной, яблоко же упало, возможно, подумал ученый, что какая-то сила воздействует как на Луну (заставляя ее вращаться по орбите), так и на яблоко, заставляя его падать на землю.

Сейчас по заверениям некоторых историков науки вся эта история про яблоко лишь красивая выдумка. На самом деле падало яблоко или нет, не столь уж важно, важно, что ученый таки действительно открыл и сформулировал закон всемирного тяготения, который ныне является одним из краеугольных камней, как физики, так и астрономии.

Разумеется, и задолго до Ньютона люди наблюдали, как падающие на землю вещи, так и звезды в небе, но до него они полагали, что существует два типа гравитации: земная (действующая исключительно в пределах Земли, заставляющая тела падать) и небесная (действующая на звезды и Луну). Ньютон же был первым, кто объединил эти два типа гравитации в своей голове, первым кто понял, что гравитация есть только одна и ее действие можно описать универсальным физическим законом.

Определение закона всемирного тяготения

Согласно этому закону, все материальные тела притягивают друг друга, при этом сила притяжения не зависит от физических или химических свойств тел. Зависит она, если все максимально упростить, лишь от веса тел и расстояния между ними. Также дополнительно нужно принять во внимание тот факт, что на все тела находящиеся на Земле действует сила притяжения самой нашей планеты, получившая название – гравитация (с латыни слово «gravitas» переводиться как тяжесть).

Попробуем же теперь сформулировать и записать закон всемирного тяготения максимально кратко: сила притяжения между двумя телами с массами m1 и m2 и разделенными расстоянием R прямо пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними.

Формула закона всемирного тяготения

Ниже представляем вашему вниманию формулу закона всемирного тяготения.

G в этой формуле это гравитационная постоянная, равная 6,67408(31) 10 −11 эта величина воздействия на любой материальный объект силы гравитации нашей планеты.

Закон всемирного тяготения и невесомость тел

Открытый Ньютоном закон всемирного тяготения, а также сопутствующий математический аппарат позже легли в основу небесной механики и астрономии, ведь с помощью него можно объяснить природу движения небесных тел, равно как и явление невесомости. Находясь в космическом пространстве на значительном удалении от силы притяжения-гравитации такого большого тела как планета, любой материальный объект (например, космический корабль с астронавтами на борту) окажется в состоянии невесомости, так как сила гравитационного воздействия Земли (G в формуле закона тяготения) или какой-нибудь другой планеты, больше не будет на него влиять.

Закон всемирного тяготения, видео

И в завершение поучительное видео об открытии закона всемирного тяготения.

«Физика - 10 класс»

Почему Луна движется вокруг Земли?
Что будет, если Луна остановится?
Почему планеты обращаются вокруг Солнца?

В главе 1 подробно говорилось о том, что земной шар сообщает всем телам у поверхности Земли одно и то же ускорение - ускорение свободного падения. Но если земной шар сообщает телу ускорение, то согласно второму закону Ньютона он действует на тело с некоторой силой. Силу, с которой Земля действует на тело, называют силой тяжести . Сначала найдём эту силу, а затем и рассмотрим силу всемирного тяготения.

Ускорение по модулю определяется из второго закона Ньютона:

В общем случае оно зависит от силы, действующей на тело, и его массы. Так как ускорение свободного падения не зависит от массы, то ясно, что сила тяжести должна быть пропорциональна массе:

Физическая величина - ускорение свободного падения, оно постоянно для всех тел.

На основе формулы F = mg можно указать простой и практически удобный метод измерения масс тел путём сравнения массы данного тела с эталоном единицы массы. Отношение масс двух тел равно отношению сил тяжести, действующих на тела:

Это значит, что массы тел одинаковы, если одинаковы действующие на них силы тяжести.

На этом основано определение масс путём взвешивания на пружинных или рычажных весах. Добиваясь того, чтобы сила давления тела на чашку весов, равная силе тяжести, приложенной к телу, была уравновешена силой давления гирь на другую чашку весов, равной силе тяжести, приложенной к гирям, мы тем самым определяем массу тела.

Сила тяжести, действующая на данное тело вблизи Земли, может считаться постоянной лишь на определенной широте у поверхности Земли. Если тело поднять или перенести в место с другой широтой, то ускорение свободного падения, а следовательно, и сила тяжести изменятся.


Сила всемирного тяготения.

Ньютон был первым, кто строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила всемирного тяготения , действующая между любыми телами Вселенной.

Ньютон пришёл к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы (рис. 3.1) с определённой скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался бы вокруг неё подобно тому, как планеты описывают в небесном пространстве свои орбиты.

Ньютон нашёл эту причину и смог точно выразить её в виде одной формулы - закона всемирного тяготения.

Так как сила всемирного тяготения сообщает всем телам одно и то же ускорение независимо от их массы, то она должна быть пропорциональна массе того тела, на которое действует:

«Тяготение существует ко всем телам вообще и пропорционально массе каждого из них... все планеты тяготеют друг к другу...» И. Ньютон

Но поскольку, например, Земля действует на Луну с силой, пропорциональной массе Луны, то и Луна по третьему закону Ньютона должна действовать на Землю с той же силой. Причём эта сила должна быть пропорциональна массе Земли. Если сила тяготения является действительно универсальной, то со стороны данного тела на любое другое тело должна действовать сила, пропорциональная массе этого другого тела. Следовательно, сила всемирного тяготения должна быть пропорциональна произведению масс взаимодействующих тел. Отсюда вытекает формулировка закона всемирного тяготения.

Закон всемирного тяготения:

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности G называется гравитационной постоянной .

Гравитационная постоянная численно равна силе притяжения между двумя материальными точками массой 1 кг каждая, если расстояние между ними равно 1 м. Ведь при массах m 1 = m 2 = 1 кг и расстоянии r = 1 м получаем G = F (численно).

Нужно иметь в виду, что закон всемирного тяготения (3.4) как всеобщий закон справедлив для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 3.2, а).

Можно показать, что однородные тела, имеющие форму шара (даже если их нельзя считать материальными точками, рис. 3.2, б), также взаимодействуют с силой, определяемой формулой (3.4). В этом случае r - расстояние между центрами шаров. Силы взаимного притяжения лежат на прямой, проходящей через центры шаров. Такие силы называются центральными . Тела, падение которых на Землю мы обычно рассматриваем, имеют размеры, много меньшие, чем земной радиус (R ≈ 6400 км).

Такие тела можно, независимо от их формы, рассматривать как материальные точки и определять силу их притяжения к Земле с помощью закона (3.4), имея в виду, что r есть расстояние от данного тела до центра Земли.

Брошенный на Землю камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадёт наконец на Землю. Если его бросить с большей скоростью, то он упадёт дальше». И. Ньютон

Определение гравитационной постоянной.


Теперь выясним, как можно найти гравитационную постоянную. Прежде всего заметим, что G имеет определённое наименование. Это обусловлено тем, что единицы (и соответственно наименования) всех величин, входящих в закон всемирного тяготения, уже были установлены ранее. Закон же тяготения даёт новую связь между известными величинами с определёнными наименованиями единиц. Именно поэтому коэффициент оказывается именованной величиной. Пользуясь формулой закона всемирного тяготения, легко найти наименование единицы гравитационной постоянной в СИ: Н м 2 /кг 2 = м 3 /(кг с 2).

Для количественного определения G нужно независимо определить все величины, входящие в закон всемирного тяготения: обе массы, силу и расстояние между телами.

Трудность состоит в том, что гравитационные силы между телами небольших масс крайне малы. Именно по этой причине мы не замечаем притяжение нашего тела к окружающим предметам и взаимное притяжение предметов друг к другу, хотя гравитационные силы - самые универсальные из всех сил в природе. Два человека массами по 60 кг на расстоянии 1 м друг от друга притягиваются с силой всего лишь порядка 10 -9 Н. Поэтому для измерения гравитационной постоянной нужны достаточно тонкие опыты.

Впервые гравитационная постоянная была измерена английским физиком Г. Кавендишем в 1798 г. с помощью прибора, называемого крутильными весами. Схема крутильных весов показана на рисунке 3.3. На тонкой упругой нити подвешено лёгкое коромысло с двумя одинаковыми грузиками на концах. Рядом неподвижно закреплены два тяжёлых шара. Между грузиками и неподвижными шарами действуют силы тяготения. Под влиянием этих сил коромысло поворачивается и закручивает нить до тех пор, пока возникающая сила упругости не станет равна гравитационной силе. По углу закручивания можно определить силу притяжения. Для этого нужно только знать упругие свойства нити. Массы тел известны, а расстояние между центрами взаимодействующих тел можно непосредственно измерить.

Из этих опытов было получено следующее значение для гравитационной постоянной:

G = 6,67 10 -11 Н м 2 /кг 2 .

Лишь в том случае, когда взаимодействуют тела огромных масс (или по крайней мере масса одного из тел очень велика), сила тяготения достигает большого значения. Например, Земля и Луна притягиваются друг к другу с силой F ≈ 2 10 20 Н.


Зависимость ускорения свободного падения тел от географической широты.


Одна из причин увеличения ускорения свободного падения при перемещении точки, где находится тело, от экватора к полюсам, состоит в том, что земной шар несколько сплюснут у полюсов и расстояние от центра Земли до её поверхности у полюсов меньше, чем на экваторе. Другой причиной является вращение Земли.


Равенство инертной и гравитационной масс.


Самым поразительным свойством гравитационных сил является то, что они сообщают всем телам, независимо от их масс, одно и то же ускорение. Что бы вы сказали о футболисте, удар которого одинаково ускорял бы обыкновенный кожаный мяч и двухпудовую гирю? Каждый скажет, что это невозможно. А вот Земля является именно таким «необыкновенным футболистом» с той только разницей, что действие её на тела не носит характера кратковременного удара, а продолжается непрерывно миллиарды лет.

В теории Ньютона масса является источником поля тяготения. Мы находимся в поле тяготения Земли. В то же время мы также являемся источниками поля тяготения, но в силу того, что наша масса существенно меньше массы Земли, наше поле намного слабее и окружающие предметы на него не реагируют.

Необыкновенное свойство гравитационных сил, как мы уже говорили, объясняется тем, что эти силы пропорциональны массам обоих взаимодействующих тел. Масса тела, которая входит во второй закон Ньютона, определяет инертные свойства тела, т. е. его способность приобретать определённое ускорение под действием данной силы. Это инертная масса m и.

Казалось бы, какое отношение она может иметь к способности тел притягивать друг друга? Масса, определяющая способность тел притягиваться друг к другу, - гравитационная масса m r .

Из механики Ньютона совсем не следует, что инертная и гравитационная массы одинаковы, т. е. что

m и = m r . (3.5)

Равенство (3.5) является непосредственным следствием из опыта. Оно означает, что можно говорить просто о массе тела как о количественной мере как инертных, так и гравитационных его свойств.

Психология